
The Toyota Mirai delivers everything expected of a next-generation car: an immediately recognizable design; driving exhilaration stemming from superior handling stability achieved by a low center of gravity; and quiet but powerful acceleration provided by the electric motor.

Hydrogen can be generated using a wide range of natural resources and man-made byproducts such as sewage sludge. It can also be created from water using natural renewable energy sources like solar and wind power. When compressed, it has a higher energy density than batteries, and is relatively easy to store and transport, therefore it also carries expectations for potential future use in power generation and a wide range of other applications. FCVs are able to generate their own electricity from hydrogen, meaning they can help make a future hydrogen-based society a reality, and are therefore expected to further contribute to accelerating energy diversification.

Toyota FC Stack
The new Toyota FC Stack achieves a maximum output of 114 kW (155 DIN hp). Electricity generation efficiency has been enhanced through the use of 3D fine mesh flow channels (a world first), which ensure uniform generation of electricity on cell surfaces, providing compact size and a high level of performance, and a world-leading power output density of 3.1 kW/L (2.2 times higher than that of the previous Toyota FCHV-adv limited-lease model).
The amount of water on fuel cell electrolyte membranes has a substantial influence on electricity generation efficiency. Control of the amount of water is carried out using an internal circulation system for circulating the water created when generating electricity, meaning the Toyota FC Stack is a world-leading system that, unlike systems used in all other previous Toyota fuel cell vehicles, does not require the use of a humidifier.

FC Boost Converter
A new compact, high-efficiency, high-capacity converter has been developed to boost power generated in the Toyota FC Stack to 650 volts. Increasing the voltage has made it possible to reduce the size of the electric motor and the number of Toyota FC Stack fuel cells, leading to a smaller, higher-performance Toyota Fuel Cell System, thereby reducing system costs.

High-pressure Hydrogen Tanks
Tanks with a three-layer structure made of carbon fiber-reinforced plastic and other materials are used to store hydrogen at a very high pressure of 70 MPa (70 megapascals, or approximately 700 bar). Compared to the high pressure hydrogen tanks used in the Toyota FCHV-adv model, tank storage has been increased by approximately 20 percent while both weight and size have been reduced to achieve a world-leading5 5.7 wt%.